Impact of Fructose and Fructose Containing Sugars on Indices of Cardiometabolic Health When Consumed at Typical Levels

Introduction

•The American Heart Association recommends that women and men should not consume more than 100 or 150 kcal/day, respectively, from added sugars. •The potential of high doses of fructose to cause cardiometabolic disorders is well established.

•However, pure fructose is rarely consumed and it is unclear whether the same risks apply to the common sources of fructose in the diet – High Fructose Corn Syrup (HFCS) and Sucrose.

•The purpose of this study was two compare the effect on components of cardiometabolic health of fructose compared to other fructose containing sugars and glucose control group when consumed at levels typical of the US population.

Nethods

•The study included 268 weight-stable individuals (no change in weight >3% for 3 months) who were either normal weight or over weight overweight, normotensive, normoglycemic and with no other overt health problems.

 Individuals were required to consume sugar-sweetened low-fat milk every day for ten weeks as part of their usual diet.

•The added sugar in the milk represented the 50th percentile for sugar consumption in the **United States:**

•Fructose - added fructose providing 9% of calories required for weight maintenance •Glucose - added glucose providing 9% of calories required for weight maintenance •HFCS - added HFCS providing 18% of calories required for weight maintenance •Sucrose - added sucrose providing 18% of calories required for weight maintenance. •Energy intake required for weight maintenance was estimated from the Mifflin St Joer prediction including an individualized activity factor based on responses to a physical activity questionnaire.

•Other than milk consumption participants followed no structured dietary program. They were counseled on how to account for the calories in the sweetened milk, but were told to continue to eat to the same level of fullness as prior to enrollment. •Three-day food diaries and NDSR were used to evaluate dietary intake at baseline and after ten-weeks.

Subjects and research staff were blinded to which sugar was consumed.

Support for this study provided by a grant from the Corn Refiners Association

Joshua Lowndes, Stephanie Sinnett, Kory Grench, Richard Jordan, James Rippe Rippe Lifestyle Institute, Celebration, FL

HDL (m

Triglyce

Glucos

Body F

Results

Table 1. Metabolic Syndrome Components

		Entire Cohort	Time p	HFCS	Fructose	Glucose	Sucrose	Time X Group p			Entire	Time p	HFCS	Fructose	Glucose	Sucrose	Time X
	Pre	80.88 ±		80.51 ±	82.06 ±	79.72	81.45 ±				Cohort						Group p
ference		9.45	_	9.29	10.43	±8.47	9.73	_	Total	Pre	177.39 ±		175.33 ±	181.26 ±	176.28 ±	176.75 ±	
	Post	81.45 ±	<0.001	81.31 ±	82.61 ±	79.84 ±	82.38 ±	0 1 5 1	Cholesterol		39 44		41.67	40.84	39.35	36.43	
Rlood	Dro	9.46	<0.001	8.89	10.97	8.47	9.43	0.151		Dect		-					-
re		109.10 ±		9.70	107.71 -	10.09	±10.28			POSL	180.10 ±		1/9.98 I	180.72 I	1/0.10 1	184.33 I	
g)	Post	106.13 ±	_	107.57 ±	105.49 ±	104.60 ±	107.25 ±	_			39.98	0.038	41.96	35.53	42.30	39.96	0.116
		10.39	<0.001	11.29	9.97	9.78	10.55	0.081	LDL (mg/dl)	Pre	104.27 ±		100.52 ±	109.20 ±	103.37 ±	103.92 ±	
ic Blood	Pre	69.78 ±		69.48 ±	69.68 ±	68.96 ±	71.14 ±				34.20		35.18	34.74	34.31	32.80	
re	Post	8./1	_	9.71	8.83	8.34	8.02	_		Doct		-	101 12 +			100 70 +	-
57	PUSL	08.05 ± 9.68	0.003	10.78	07.82 ± 8.91	9.35	9.48	0.510		PUSL	105.41 1	0.244		107.97 ±	105.04 1	100.70 ±	0.001
ng/dl)	Pre	51.51 ±		53.52 ±	51.45 ±	52.92 ±	52.11 ±				34.58	0.341	33.37	30.86	36.68	36.85	0.361
		12.77		13.07	12.97	13.06	12.11		Apolipoprotein	Pre	86.53 ±		86.02 ±	89.09 ±	83.02 ±	88.60 ±	
	Post	52.36 ±		53.08 ±	51.42 ±	52.33 ±	52.67 ±		B (mg/dl)		25.79		26.29	27.43	26.18	23.06	
	Dro		0.760		12.75	12.91	12.40	0.766		Post	00 78 +	-	80.31 +	07 35 +	87 / 7 +	0/ 50 +	-
erides)	Pre	101.56 ±		98.20 ±	104.29 ±	100.28 ±	103.54 ±			FUSL	90.78 ±	.0.001	09.51 ±	92.55 ±	07.47 ±	94.J9 <u>-</u>	0 770
	Post	111.70 ±	_	129.03 ±	106.86 ±	99.86 ±	114.21 ±	_			25.62	<0.001	25.63	23.29	25.48	27.93	0.779
		79.14	0.005	120.49 †	66.13	57.21	60.43	0.021	Insulin (μIU/mI)	Pre	8.55 ±		7.99 ±	9.43 ±	8.63 ±	8.07 ±	
e (mg/dl)	Pre	90.00 ±		89.43 ±	90.48 ±	90.66 ±	89.27 ±				6.10		5.71	6.13	7.12	5.06	
	Deet	6.50	_	6.54		6.18	6.27	_		Post	11 20 +	_	8 6/1 +	18 65 +	9 07 +	8 56 +	
	POST	90.66 ±	0.187	88.41 ±	91.65 ±	91.03 ±	91.38 ±	0.170		1030		0.240			$5.07 \pm$		
		7.05	0.107	0.21	5.25	0.05	7.05				39.32	0.240	5.//	/8./2	0.18	5.50	0.455
									HOMA Insulin	Pre	1.60 ±		1.39 ±	1.65 ±	1.76 ±	1.58 ±	
									Resistance		1.35		0.98	1.05	2.14	0.91	
										Post	1.74 +	-	1.57 +	1.78 +	2.04 +	1.58 +	
											1.29		1.04	1.42	1.56	1.04	
												0.216					0.870
Table	Table 2 Weight and Rody Fat								2 Hour AUC	Pre	13.28 ±		12.91 ±	13.43 ±	12.98 ±	13.71 ±	
		- gint ai		ay i at					Glucose		2.53		2.17	2.46	2.62	2.81	
	1				1				AUC (min*g/dl)	Post	13.16 ±	-	12.91 ±	13.55 ±	12.95 ±	13.16 ±	
		Entire Cohort	Time p	HFCS	Fructose	Glucose	Sucrose	Time X Group p			2.56	0.572	2.67	2.44	2.64	2.56	0.640
t (lbs)	Pre	162.23 ±		162.09 ±	166.61 ±	159.13 ±	161.66 ±	0.118	2 Hour AUC	Pre	2.52 ±		2.43 ±	2.84 ±	2.47 ±	2.32 ±	
		27.28		26.12	30.90	24.88	27.26	_	Insulin		1 2 2		1 /0	1 16	1 27	1.06	
	Post	164.15 ±	<u> 20 001</u>	164.05 ±	168.15 ±	160.44 ±	164.66 ±		(min*ml1/ml)			-	1.40	1.40		1.00	-
at %	Dro	28.14	<0.001	27.28	32.52	24.81	27.99			Post	2.54 ±		2.54 ±	2.82 ±	2.33 ±	2.46 ±	
αι /0		8.99		9.39	8.91	9.36	8.42				1.57	0.775	1.62	1.77	1.61	1.22	0.647

		Entire	Time p	HFCS	Fructose	Glucose	Sucrose	Time X	
		Cohort						Group p	
t (lbs)	Pre	162.23 ±		162.09 ±	166.61 ±	159.13 ±	161.66 ±	0.118	2
		27.28		26.12	30.90	24.88	27.26		
	Post	164.15 ±		164.05 ±	168.15 ±	160.44 ±	164.66 ±		
		28.14	<0.001	27.28	32.52	24.81	27.99		(m
at %	Pre	34.24 ±		33.42 ±	33.90 ±	33.42 ±	36.13 ±		
		8.99		9.39	8.91	9.36	8.42		
	Post	34.79 ±	-	34.16 ±	34.21 ±	33.76 ±	36.89 ±		
		8.74	<0.001	8.98	8.91	9.21	7.86	0.445	_
ninal Fat	Pre	36.31 ±		34.71 ±	36.35 ±	35.19 ±	38.70 ±		+
		11.58		12.11	11.63	12.60	10.03		•
	Post	36.84 ±		35.47 ±	36.52 ±	35.43 ±	39.68 ±		
		11.20	0.011	11.40	11.80	12.44	8.88	0.423	

Discussion & Conclusion

•These data suggest that when consumed as part of normal diet at typical levels the effects of commonly consumed sugars on cardiometabolic health is small and primarily related to body composition, even when consumption is significantly higher than recommended by the AHA. •While differential effects were observed for triglycerides, the often cited negative effects of fructose or fructose containing sugars compared to glucose was not evident for any other measure.

Rippe Lifestyle Institute

Table 3. Related Measures

Change Greater than Glucose.